INCORPORATION OF CARBON DIOXIDE IN ALKYNE OLIGOMERIZATION CATALYZED BY NICKEL(0) COMPLEXES. FORMATION OF SUBSTITUTED 2-PYRONES

Yoshio INOUE, Yoshio ITOH, and Harukichi HASHIMOTO Department of Applied Chemistry, Faculty of Engineering, Tohoku University, Aoba-Sendai 980

l-Hexyne and carbon dioxide were allowed to react with the catalyst system, Ni(COD) $_2$ [COD=1,5-cyclooctadiene]-Ph $_2$ P(CH $_2$) $_n$ PPh $_2$ (n=1,2,3,4), to give 4,6-dibutyl-2-pyrone together with l-hexyne oligomers.

Catalytic fixation of ${\rm CO}_2$ in organic compounds by transition metals to form a new C-C bond between them is a fascinating subject. However this has not been reported in the literature except one example in which butadiene was reacted with a palladium-phosphine complex in the presence of ${\rm CO}_2$ to give a lactone. In this communication we wish to show another example of the fixation of ${\rm CO}_2$ in alkynes by nickel(0) complexes.

When 1-hexyne was reacted with Ni(COD) $_2$ -Ph $_2$ P(CH $_2$) $_n$ PPh $_2$ (n=1,2,3,4) system in benzene at 120 °C under CO $_2$ initial pressure of 50 kg/cm 2 for 20 hr, 4,6-dibuty1-2-pyrone (I) was obtained together with 1-hexyne oligomers(See Table 1).

The structure of the pyrone was confirmed by the following spectral data and elemental analysis [IR; 1735(V C=O), 1642, 1560 cm $^{-1}$ (V C=C): UV(EtOH); λ max 202($\frac{\epsilon}{\epsilon}$ 6090), λ max 290 nm($\frac{\epsilon}{\epsilon}$ 2350): 1 H-NMR; 4.33, 4.44 τ (olefinic)]. The other possible isomers of the pyrone were not detected.

The addition of 4 molar ratio of the ditertiary phosphine with n=4 to Ni(COD) $_2$ increased the yield of the pyrone compared with that of 2 molar ratio of the phosphine (See Run 5 and 6). In the case of triphenylphosphine or the ditertiary phosphine with n=6 or 10, the incorporation of ${\rm CO}_2$ was very small. 1-Butyne reacted also with ${\rm CO}_2$ in the presence of Ni(Ph $_2$ PCH $_2$ CH $_2$ PPh $_2$) $_2$ complex under a similar condition to give 4,6-diethyl-2-pyrone but phenyl- or diphenylacetylene did not give any ${\rm CO}_2$ incorporated product.

Run	n for	Ph ₂ P(CH ₂) _n PPh ₂ /Ni	l-hexyne	Products(%)b)		
No	$Ph_2P(CH_2)_nPPh_2$	(molar ratio)	recovered(%)	(I)	(II)	(III)
1	1	2	8.1	1.7	9.6	1.1
2	2	2	5.2	3.7	18.2	3.8
3	2 ^{C)}	2	36.1	1.0	3.9	1.1
4	3	2	4.9	4.8	15.0	2.2
5	4	2	9.3	6.6	18.8	2.5
6	4	4	1.0	9.3	16.4	3.3

Table 1 Reaction of CO₂ with 1-hexyne by Ni(COD)₂-Ph₂P(CH₂)_nPPh₂ system^{a)}

- a) 1-hexyne 3 ml, Ni(COD) $_2$ 0.4 mmol, solvent(benzene) 10 ml, CO $_2$ (initial) 50 kg/cm 2 ; 120 °C, 20 hr.
- b) The yields, based on 1-hexyne charged, were determined by glc. The other products (mainly higher oligomers of 1-hexyne) were not analyzed.
- c) Ni(Ph₂PCH₂CH₂PPh₂)₂ complex 0.1 mmol was used.

We tentatively propose the following metalacyclopentadiene intermediate for this reaction in which the ditertiary phosphine coordiantes the central nickel atom. ²⁾

L - Ni
$$R$$
 CO_2 CO_2 R R CO_2 R R R $C_4H_9^-, C_2H_5^-$

The attack of CO₂ on the intermediate leads to the pyrone formation³⁾ whereas that of another acetylenic molecule on it results in the formation of oligomers. The coordination ability of the phosphine ligand may influence the selectivity of the products.

A cobalt complex, $HCo(Ph_2PCH_2CH_2PPh_2)_2$, is also effective for the pyrone formation though the yield of the pyrone is rather low compared to the corresponding nickel-ditertiary phosphine complex. An iron complex, $H_2Fe(Ph_2PCH_2CH_2PPh_2)_2$, is not effective for the pyrone formation.

We thank the Ministry of Education, Japan, for the support.

References

- 1) Y. Sasaki, Y. Inoue, and H. Hashimoto, J. C. S. Chem. Commun., 1976, 605.
- J. J. Eisch and G. A.Damasevitz, J. Organometal. Chem., <u>96</u>, C19 (1975);
 J. J. Eisch and J. E. Galle, J. Organometal. Chem., <u>96</u>, C23 (1975).
- 3) A similar reaction of CS₂ (an isoelectronic compound of CO₂) with cobaltacyclopentadiene complexes to give 1,2-dithiopyrones has been reported;
 Y. Wakatsuki and H. Yamazaki, J. C. S. Chem. Commun., 1973, 280.